MakeItFrom.com
Menu (ESC)

EN 1.0503 Steel vs. EN 1.0308 Steel

Both EN 1.0503 steel and EN 1.0308 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0503 steel and the bottom bar is EN 1.0308 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
100 to 130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
7.8 to 28
Fatigue Strength, MPa 210
140 to 200
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Shear Strength, MPa 380
230 to 260
Tensile Strength: Ultimate (UTS), MPa 630
360 to 440
Tensile Strength: Yield (Proof), MPa 310
190 to 340

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 19
18
Embodied Water, L/kg 47
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
32 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 260
93 to 300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
13 to 16
Strength to Weight: Bending, points 21
14 to 16
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 20
11 to 14

Alloy Composition

Carbon (C), % 0.42 to 0.5
0 to 0.17
Chromium (Cr), % 0 to 0.4
0
Iron (Fe), % 97.3 to 99.08
98.2 to 100
Manganese (Mn), % 0.5 to 0.8
0 to 1.2
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 0.35
Sulfur (S), % 0 to 0.045
0 to 0.045