MakeItFrom.com
Menu (ESC)

EN 1.0580 Steel vs. AISI 434 Stainless Steel

Both EN 1.0580 steel and AISI 434 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0580 steel and the bottom bar is AISI 434 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 5.6 to 25
24
Fatigue Strength, MPa 210 to 270
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 340 to 360
330
Tensile Strength: Ultimate (UTS), MPa 540 to 620
520
Tensile Strength: Yield (Proof), MPa 290 to 450
320

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
880
Melting Completion (Liquidus), °C 1460
1510
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
25
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.4
Embodied Energy, MJ/kg 18
33
Embodied Water, L/kg 46
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 540
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19 to 22
19
Strength to Weight: Bending, points 19 to 21
18
Thermal Diffusivity, mm2/s 14
6.7
Thermal Shock Resistance, points 17 to 20
19

Alloy Composition

Carbon (C), % 0 to 0.22
0 to 0.12
Chromium (Cr), % 0
16 to 18
Iron (Fe), % 97.5 to 100
78.6 to 83.3
Manganese (Mn), % 0 to 1.6
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.55
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.030