MakeItFrom.com
Menu (ESC)

EN 1.0580 Steel vs. EN 1.0345 Steel

Both EN 1.0580 steel and EN 1.0345 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0580 steel and the bottom bar is EN 1.0345 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
120
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 5.6 to 25
27
Fatigue Strength, MPa 210 to 270
170
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 340 to 360
270
Tensile Strength: Ultimate (UTS), MPa 540 to 620
420
Tensile Strength: Yield (Proof), MPa 290 to 450
230

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
49
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.1
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 18
19
Embodied Water, L/kg 46
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 120
96
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 540
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19 to 22
15
Strength to Weight: Bending, points 19 to 21
16
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 17 to 20
13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.22
0 to 0.16
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.5 to 100
97.2 to 99.38
Manganese (Mn), % 0 to 1.6
0.6 to 1.2
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.020
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.55
0 to 0.35
Sulfur (S), % 0 to 0.045
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.020