EN 1.0580 Steel vs. EN 1.4028 Stainless Steel
Both EN 1.0580 steel and EN 1.4028 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is EN 1.0580 steel and the bottom bar is EN 1.4028 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 5.6 to 25 | |
11 to 17 |
Fatigue Strength, MPa | 210 to 270 | |
230 to 400 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
76 |
Shear Strength, MPa | 340 to 360 | |
410 to 550 |
Tensile Strength: Ultimate (UTS), MPa | 540 to 620 | |
660 to 930 |
Tensile Strength: Yield (Proof), MPa | 290 to 450 | |
390 to 730 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
270 |
Maximum Temperature: Mechanical, °C | 400 | |
760 |
Melting Completion (Liquidus), °C | 1460 | |
1440 |
Melting Onset (Solidus), °C | 1420 | |
1400 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 51 | |
30 |
Thermal Expansion, µm/m-K | 12 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
2.8 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.2 | |
3.2 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
7.0 |
Density, g/cm3 | 7.8 | |
7.7 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
1.9 |
Embodied Energy, MJ/kg | 18 | |
27 |
Embodied Water, L/kg | 46 | |
100 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 31 to 120 | |
94 to 96 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 230 to 540 | |
380 to 1360 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 19 to 22 | |
24 to 33 |
Strength to Weight: Bending, points | 19 to 21 | |
22 to 27 |
Thermal Diffusivity, mm2/s | 14 | |
8.1 |
Thermal Shock Resistance, points | 17 to 20 | |
23 to 32 |
Alloy Composition
Carbon (C), % | 0 to 0.22 | |
0.26 to 0.35 |
Chromium (Cr), % | 0 | |
12 to 14 |
Iron (Fe), % | 97.5 to 100 | |
83.1 to 87.7 |
Manganese (Mn), % | 0 to 1.6 | |
0 to 1.5 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.040 |
Silicon (Si), % | 0 to 0.55 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.045 | |
0 to 0.015 |