MakeItFrom.com
Menu (ESC)

EN 1.0590 Steel vs. EN 1.4470 Stainless Steel

Both EN 1.0590 steel and EN 1.4470 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0590 steel and the bottom bar is EN 1.4470 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
23
Fatigue Strength, MPa 290
320
Impact Strength: V-Notched Charpy, J 31
34
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
80
Tensile Strength: Ultimate (UTS), MPa 620
680
Tensile Strength: Yield (Proof), MPa 430
480

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1060
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
18
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
17
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
3.6
Embodied Energy, MJ/kg 22
49
Embodied Water, L/kg 48
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 480
570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 14
4.8
Thermal Shock Resistance, points 20
18

Alloy Composition

Carbon (C), % 0 to 0.24
0 to 0.030
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 96.4 to 100
63.7 to 71.9
Manganese (Mn), % 0 to 1.8
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
4.5 to 6.5
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.027
0.12 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.025
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.15
0