MakeItFrom.com
Menu (ESC)

EN 1.1122 Steel vs. ACI-ASTM CF8C Steel

Both EN 1.1122 steel and ACI-ASTM CF8C steel are iron alloys. They have 68% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.1122 steel and the bottom bar is ACI-ASTM CF8C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 130
150
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 21
40
Fatigue Strength, MPa 170 to 260
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 340 to 460
530
Tensile Strength: Yield (Proof), MPa 240 to 370
260

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
980
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
16
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
19
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
3.7
Embodied Energy, MJ/kg 18
53
Embodied Water, L/kg 46
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 89
180
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 360
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 12 to 16
19
Strength to Weight: Bending, points 14 to 17
19
Thermal Diffusivity, mm2/s 14
4.3
Thermal Shock Resistance, points 11 to 15
11

Alloy Composition

Carbon (C), % 0.080 to 0.12
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 98.7 to 99.62
61.8 to 73
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 2.0
Sulfur (S), % 0 to 0.025
0 to 0.040