MakeItFrom.com
Menu (ESC)

EN 1.1122 Steel vs. EN 1.4865 Stainless Steel

Both EN 1.1122 steel and EN 1.4865 stainless steel are iron alloys. They have 40% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.1122 steel and the bottom bar is EN 1.4865 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 130
140
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 21
6.8
Fatigue Strength, MPa 170 to 260
120
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 340 to 460
470
Tensile Strength: Yield (Proof), MPa 240 to 370
250

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 400
1020
Melting Completion (Liquidus), °C 1460
1380
Melting Onset (Solidus), °C 1420
1330
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
12
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
33
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.4
5.8
Embodied Energy, MJ/kg 18
81
Embodied Water, L/kg 46
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 89
27
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 360
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 12 to 16
16
Strength to Weight: Bending, points 14 to 17
17
Thermal Diffusivity, mm2/s 14
3.1
Thermal Shock Resistance, points 11 to 15
11

Alloy Composition

Carbon (C), % 0.080 to 0.12
0.3 to 0.5
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 98.7 to 99.62
34.4 to 44.7
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
36 to 39
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.3
1.0 to 2.5
Sulfur (S), % 0 to 0.025
0 to 0.030