MakeItFrom.com
Menu (ESC)

EN 1.1147 Steel vs. EN 1.4301 Stainless Steel

Both EN 1.1147 steel and EN 1.4301 stainless steel are iron alloys. They have 72% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.1147 steel and the bottom bar is EN 1.4301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
190 to 270
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 17
14 to 46
Fatigue Strength, MPa 180 to 250
200 to 330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 280
430 to 550
Tensile Strength: Ultimate (UTS), MPa 390 to 470
610 to 900
Tensile Strength: Yield (Proof), MPa 280 to 370
220 to 570

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
940
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
15
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
15
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 18
43
Embodied Water, L/kg 46
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 73
110 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 370
120 to 820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 14 to 17
22 to 32
Strength to Weight: Bending, points 15 to 17
20 to 27
Thermal Diffusivity, mm2/s 14
4.0
Thermal Shock Resistance, points 12 to 15
14 to 20

Alloy Composition

Carbon (C), % 0.15 to 0.19
0 to 0.070
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 98.3 to 99.25
66.8 to 74.5
Manganese (Mn), % 0.6 to 0.9
0 to 2.0
Nickel (Ni), % 0
8.0 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.015