MakeItFrom.com
Menu (ESC)

EN 1.1191 Steel vs. S82013 Stainless Steel

Both EN 1.1191 steel and S82013 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.1191 steel and the bottom bar is S82013 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 200
260
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16 to 17
34
Fatigue Strength, MPa 210 to 290
400
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
78
Shear Strength, MPa 380 to 430
470
Tensile Strength: Ultimate (UTS), MPa 630 to 700
710
Tensile Strength: Yield (Proof), MPa 310 to 440
500

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
970
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 48
15
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
11
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.4
Embodied Energy, MJ/kg 19
34
Embodied Water, L/kg 47
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 100
220
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 510
640
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22 to 25
26
Strength to Weight: Bending, points 21 to 22
23
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 20 to 22
20

Alloy Composition

Carbon (C), % 0.42 to 0.5
0 to 0.060
Chromium (Cr), % 0 to 0.4
19.5 to 22
Copper (Cu), % 0
0.2 to 1.2
Iron (Fe), % 97.3 to 99.08
70.5 to 77.1
Manganese (Mn), % 0.5 to 0.8
2.5 to 3.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0.5 to 1.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.9
Sulfur (S), % 0 to 0.035
0 to 0.030