MakeItFrom.com
Menu (ESC)

EN 1.1221 Steel vs. S82013 Stainless Steel

Both EN 1.1221 steel and S82013 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.1221 steel and the bottom bar is S82013 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 250
260
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 10 to 21
34
Fatigue Strength, MPa 240 to 340
400
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
78
Shear Strength, MPa 450 to 520
470
Tensile Strength: Ultimate (UTS), MPa 730 to 870
710
Tensile Strength: Yield (Proof), MPa 390 to 550
500

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
970
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 48
15
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
11
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.5
2.4
Embodied Energy, MJ/kg 19
34
Embodied Water, L/kg 47
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67 to 130
220
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 800
640
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26 to 31
26
Strength to Weight: Bending, points 23 to 26
23
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 23 to 28
20

Alloy Composition

Carbon (C), % 0.57 to 0.65
0 to 0.060
Chromium (Cr), % 0 to 0.4
19.5 to 22
Copper (Cu), % 0
0.2 to 1.2
Iron (Fe), % 97.1 to 98.8
70.5 to 77.1
Manganese (Mn), % 0.6 to 0.9
2.5 to 3.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0.5 to 1.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.9
Sulfur (S), % 0 to 0.035
0 to 0.030