MakeItFrom.com
Menu (ESC)

EN 1.3538 Steel vs. Grade 9 Titanium

EN 1.3538 steel belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.3538 steel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 670 to 740
700 to 960

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 440
330
Melting Completion (Liquidus), °C 1450
1640
Melting Onset (Solidus), °C 1410
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 41
8.1
Thermal Expansion, µm/m-K 13
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.6
36
Embodied Energy, MJ/kg 21
580
Embodied Water, L/kg 56
150

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 24 to 26
43 to 60
Strength to Weight: Bending, points 22 to 23
39 to 48
Thermal Diffusivity, mm2/s 11
3.3
Thermal Shock Resistance, points 20 to 22
52 to 71

Alloy Composition

Aluminum (Al), % 0 to 0.050
2.5 to 3.5
Carbon (C), % 0.93 to 1.1
0 to 0.080
Chromium (Cr), % 1.7 to 2.0
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96 to 97.2
0 to 0.25
Manganese (Mn), % 0.6 to 0.8
0
Molybdenum (Mo), % 0.4 to 0.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0 to 0.0015
0 to 0.15
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4