MakeItFrom.com
Menu (ESC)

EN 1.3956 Stainless Steel vs. AISI 434 Stainless Steel

Both EN 1.3956 stainless steel and AISI 434 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.3956 stainless steel and the bottom bar is AISI 434 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 27
24
Fatigue Strength, MPa 240
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
78
Tensile Strength: Ultimate (UTS), MPa 650
520
Tensile Strength: Yield (Proof), MPa 330
320

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 460
410
Maximum Temperature: Mechanical, °C 1080
880
Melting Completion (Liquidus), °C 1420
1510
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 13
10

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 4.8
2.4
Embodied Energy, MJ/kg 68
33
Embodied Water, L/kg 180
120

Common Calculations

PREN (Pitting Resistance) 34
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 270
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
19
Strength to Weight: Bending, points 21
18
Thermal Shock Resistance, points 18
19

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.12
Chromium (Cr), % 20.5 to 23.5
16 to 18
Iron (Fe), % 51.9 to 62.1
78.6 to 83.3
Manganese (Mn), % 4.0 to 6.0
0 to 1.0
Molybdenum (Mo), % 1.5 to 3.0
0.75 to 1.3
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0.1 to 0.3
0