MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. C90400 Bronze

EN 1.3961 alloy belongs to the iron alloys classification, while C90400 bronze belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 31
24
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 450
310
Tensile Strength: Yield (Proof), MPa 310
180

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Melting Completion (Liquidus), °C 1430
990
Melting Onset (Solidus), °C 1390
850
Specific Heat Capacity, J/kg-K 460
370
Thermal Expansion, µm/m-K 1.3
18

Otherwise Unclassified Properties

Base Metal Price, % relative 25
34
Density, g/cm3 8.2
8.7
Embodied Carbon, kg CO2/kg material 4.8
3.5
Embodied Energy, MJ/kg 66
56
Embodied Water, L/kg 110
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
65
Resilience: Unit (Modulus of Resilience), kJ/m3 250
150
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 15
10
Strength to Weight: Bending, points 16
12
Thermal Shock Resistance, points 130
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 60.7 to 65
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 0.5
0 to 0.010
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.020
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7