MakeItFrom.com
Menu (ESC)

EN 1.4021 Stainless Steel vs. ASTM A182 Grade F23

Both EN 1.4021 stainless steel and ASTM A182 grade F23 are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4021 stainless steel and the bottom bar is ASTM A182 grade F23.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 17
22
Fatigue Strength, MPa 240 to 380
320
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Shear Strength, MPa 390 to 530
360
Tensile Strength: Ultimate (UTS), MPa 630 to 880
570
Tensile Strength: Yield (Proof), MPa 390 to 670
460

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 760
450
Melting Completion (Liquidus), °C 1440
1500
Melting Onset (Solidus), °C 1400
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
41
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
7.0
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 1.9
2.5
Embodied Energy, MJ/kg 27
36
Embodied Water, L/kg 100
59

Common Calculations

PREN (Pitting Resistance) 13
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 1160
550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 23 to 31
20
Strength to Weight: Bending, points 21 to 26
19
Thermal Diffusivity, mm2/s 8.1
11
Thermal Shock Resistance, points 22 to 31
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0.16 to 0.25
0.040 to 0.1
Chromium (Cr), % 12 to 14
1.9 to 2.6
Iron (Fe), % 83.2 to 87.8
93.2 to 96.2
Manganese (Mn), % 0 to 1.5
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3