MakeItFrom.com
Menu (ESC)

EN 1.4028 Stainless Steel vs. EN 1.8961 Steel

Both EN 1.4028 stainless steel and EN 1.8961 steel are iron alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4028 stainless steel and the bottom bar is EN 1.8961 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 17
19
Fatigue Strength, MPa 230 to 400
150
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 410 to 550
270
Tensile Strength: Ultimate (UTS), MPa 660 to 930
430
Tensile Strength: Yield (Proof), MPa 390 to 730
220

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 760
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
45
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
2.6
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.9
1.7
Embodied Energy, MJ/kg 27
23
Embodied Water, L/kg 100
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 96
70
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 1360
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24 to 33
15
Strength to Weight: Bending, points 22 to 27
16
Thermal Diffusivity, mm2/s 8.1
12
Thermal Shock Resistance, points 23 to 32
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Carbon (C), % 0.26 to 0.35
0 to 0.16
Chromium (Cr), % 12 to 14
0.35 to 0.85
Copper (Cu), % 0
0.2 to 0.6
Iron (Fe), % 83.1 to 87.7
96.1 to 99.3
Manganese (Mn), % 0 to 1.5
0.15 to 0.7
Nickel (Ni), % 0
0 to 0.7
Niobium (Nb), % 0
0 to 0.065
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.45
Sulfur (S), % 0 to 0.015
0 to 0.035
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0
0 to 0.14