MakeItFrom.com
Menu (ESC)

EN 1.4028 Stainless Steel vs. EN AC-51100 Aluminum

EN 1.4028 stainless steel belongs to the iron alloys classification, while EN AC-51100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4028 stainless steel and the bottom bar is EN AC-51100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 11 to 17
4.5
Fatigue Strength, MPa 230 to 400
58
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 660 to 930
160
Tensile Strength: Yield (Proof), MPa 390 to 730
80

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 760
170
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 30
130
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
34
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 1.9
8.7
Embodied Energy, MJ/kg 27
150
Embodied Water, L/kg 100
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 96
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 1360
47
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 24 to 33
17
Strength to Weight: Bending, points 22 to 27
25
Thermal Diffusivity, mm2/s 8.1
53
Thermal Shock Resistance, points 23 to 32
7.3

Alloy Composition

Aluminum (Al), % 0
94.5 to 97.5
Carbon (C), % 0.26 to 0.35
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 83.1 to 87.7
0 to 0.55
Magnesium (Mg), % 0
2.5 to 3.5
Manganese (Mn), % 0 to 1.5
0 to 0.45
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15