MakeItFrom.com
Menu (ESC)

EN 1.4028 Stainless Steel vs. Grade 24 Titanium

EN 1.4028 stainless steel belongs to the iron alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4028 stainless steel and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 17
11
Fatigue Strength, MPa 230 to 400
550
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Shear Strength, MPa 410 to 550
610
Tensile Strength: Ultimate (UTS), MPa 660 to 930
1010
Tensile Strength: Yield (Proof), MPa 390 to 730
940

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 760
340
Melting Completion (Liquidus), °C 1440
1610
Melting Onset (Solidus), °C 1400
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 30
7.1
Thermal Expansion, µm/m-K 11
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.0

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 1.9
43
Embodied Energy, MJ/kg 27
710
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 96
110
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 1360
4160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 24 to 33
63
Strength to Weight: Bending, points 22 to 27
50
Thermal Diffusivity, mm2/s 8.1
2.9
Thermal Shock Resistance, points 23 to 32
72

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0.26 to 0.35
0 to 0.080
Chromium (Cr), % 12 to 14
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 83.1 to 87.7
0 to 0.4
Manganese (Mn), % 0 to 1.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4