MakeItFrom.com
Menu (ESC)

EN 1.4028 Stainless Steel vs. C85900 Brass

EN 1.4028 stainless steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4028 stainless steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 11 to 17
30
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 660 to 930
460
Tensile Strength: Yield (Proof), MPa 390 to 730
190

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 760
130
Melting Completion (Liquidus), °C 1440
830
Melting Onset (Solidus), °C 1400
790
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 30
89
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
25
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
28

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
24
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 1.9
2.9
Embodied Energy, MJ/kg 27
49
Embodied Water, L/kg 100
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 96
110
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 1360
170
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 24 to 33
16
Strength to Weight: Bending, points 22 to 27
17
Thermal Diffusivity, mm2/s 8.1
29
Thermal Shock Resistance, points 23 to 32
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0.26 to 0.35
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 83.1 to 87.7
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.5
0 to 0.010
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.015
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7