MakeItFrom.com
Menu (ESC)

EN 1.4301 Stainless Steel vs. 357.0 Aluminum

EN 1.4301 stainless steel belongs to the iron alloys classification, while 357.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4301 stainless steel and the bottom bar is 357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 270
95
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 14 to 46
3.4
Fatigue Strength, MPa 200 to 330
76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 430 to 550
200
Tensile Strength: Ultimate (UTS), MPa 610 to 900
350
Tensile Strength: Yield (Proof), MPa 220 to 570
300

Thermal Properties

Latent Heat of Fusion, J/g 290
500
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
620
Melting Onset (Solidus), °C 1380
560
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
39
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
140

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.0
8.0
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 140
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 220
11
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 820
620
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 22 to 32
38
Strength to Weight: Bending, points 20 to 27
43
Thermal Diffusivity, mm2/s 4.0
64
Thermal Shock Resistance, points 14 to 20
17

Alloy Composition

Aluminum (Al), % 0
91.3 to 93.1
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 66.8 to 74.5
0 to 0.15
Magnesium (Mg), % 0
0.45 to 0.6
Manganese (Mn), % 0 to 2.0
0 to 0.030
Nickel (Ni), % 8.0 to 10.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15