MakeItFrom.com
Menu (ESC)

EN 1.4301 Stainless Steel vs. Grade C-2 Titanium

EN 1.4301 stainless steel belongs to the iron alloys classification, while grade C-2 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4301 stainless steel and the bottom bar is grade C-2 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 270
180
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 46
17
Fatigue Strength, MPa 200 to 330
200
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 610 to 900
390
Tensile Strength: Yield (Proof), MPa 220 to 570
310

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 940
320
Melting Completion (Liquidus), °C 1430
1660
Melting Onset (Solidus), °C 1380
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 15
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.0
31
Embodied Energy, MJ/kg 43
510
Embodied Water, L/kg 140
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 220
61
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 820
460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22 to 32
24
Strength to Weight: Bending, points 20 to 27
26
Thermal Diffusivity, mm2/s 4.0
8.8
Thermal Shock Resistance, points 14 to 20
30

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.1
Chromium (Cr), % 17.5 to 19.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 66.8 to 74.5
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0 to 0.050
Nitrogen (N), % 0 to 0.1
0
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
98.8 to 100
Residuals, % 0
0 to 0.4