MakeItFrom.com
Menu (ESC)

EN 1.4305 Stainless Steel vs. CC333G Bronze

EN 1.4305 stainless steel belongs to the iron alloys classification, while CC333G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4305 stainless steel and the bottom bar is CC333G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 270
170
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 14 to 40
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 610 to 900
710
Tensile Strength: Yield (Proof), MPa 220 to 570
310

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 930
230
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1380
1020
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 15
38
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 15
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.0
3.5
Embodied Energy, MJ/kg 42
56
Embodied Water, L/kg 140
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
75
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 830
410
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22 to 32
24
Strength to Weight: Bending, points 20 to 27
21
Thermal Diffusivity, mm2/s 4.0
10
Thermal Shock Resistance, points 14 to 20
24

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Bismuth (Bi), % 0
0 to 0.010
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 17 to 19
0 to 0.050
Copper (Cu), % 0 to 1.0
76 to 83
Iron (Fe), % 66.4 to 74.9
3.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 3.0
Nickel (Ni), % 8.0 to 10
3.7 to 6.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0.15 to 0.35
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.5