MakeItFrom.com
Menu (ESC)

EN 1.4305 Stainless Steel vs. Grade 24 Titanium

EN 1.4305 stainless steel belongs to the iron alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4305 stainless steel and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 40
11
Fatigue Strength, MPa 190 to 330
550
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Shear Strength, MPa 420 to 550
610
Tensile Strength: Ultimate (UTS), MPa 610 to 900
1010
Tensile Strength: Yield (Proof), MPa 220 to 570
940

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 930
340
Melting Completion (Liquidus), °C 1420
1610
Melting Onset (Solidus), °C 1380
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 15
7.1
Thermal Expansion, µm/m-K 16
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.0

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.0
43
Embodied Energy, MJ/kg 42
710
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 830
4160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22 to 32
63
Strength to Weight: Bending, points 20 to 27
50
Thermal Diffusivity, mm2/s 4.0
2.9
Thermal Shock Resistance, points 14 to 20
72

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 66.4 to 74.9
0 to 0.4
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10
0
Nitrogen (N), % 0 to 0.1
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4