MakeItFrom.com
Menu (ESC)

EN 1.4306 Stainless Steel vs. Grade 23 Titanium

EN 1.4306 stainless steel belongs to the iron alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4306 stainless steel and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 45
6.7 to 11
Fatigue Strength, MPa 190 to 330
470 to 500
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Shear Strength, MPa 400 to 550
540 to 570
Tensile Strength: Ultimate (UTS), MPa 580 to 900
930 to 940
Tensile Strength: Yield (Proof), MPa 210 to 570
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 960
340
Melting Completion (Liquidus), °C 1420
1610
Melting Onset (Solidus), °C 1380
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 15
7.1
Thermal Expansion, µm/m-K 16
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 16
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 3.2
38
Embodied Energy, MJ/kg 45
610
Embodied Water, L/kg 150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 200
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 820
3430 to 3560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 32
58 to 59
Strength to Weight: Bending, points 20 to 27
48
Thermal Diffusivity, mm2/s 4.0
2.9
Thermal Shock Resistance, points 13 to 20
67 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 18 to 20
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 64.8 to 72
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 10 to 12
0
Nitrogen (N), % 0 to 0.1
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants