MakeItFrom.com
Menu (ESC)

EN 1.4306 Stainless Steel vs. Grade 9 Titanium

EN 1.4306 stainless steel belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4306 stainless steel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 45
11 to 17
Fatigue Strength, MPa 190 to 330
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Shear Strength, MPa 400 to 550
430 to 580
Tensile Strength: Ultimate (UTS), MPa 580 to 900
700 to 960
Tensile Strength: Yield (Proof), MPa 210 to 570
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 960
330
Melting Completion (Liquidus), °C 1420
1640
Melting Onset (Solidus), °C 1380
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 15
8.1
Thermal Expansion, µm/m-K 16
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 16
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.2
36
Embodied Energy, MJ/kg 45
580
Embodied Water, L/kg 150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 200
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 820
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 32
43 to 60
Strength to Weight: Bending, points 20 to 27
39 to 48
Thermal Diffusivity, mm2/s 4.0
3.3
Thermal Shock Resistance, points 13 to 20
52 to 71

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 18 to 20
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 64.8 to 72
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 10 to 12
0
Nitrogen (N), % 0 to 0.1
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4

Comparable Variants