MakeItFrom.com
Menu (ESC)

EN 1.4310 Stainless Steel vs. 7116 Aluminum

EN 1.4310 stainless steel belongs to the iron alloys classification, while 7116 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4310 stainless steel and the bottom bar is 7116 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 14 to 45
7.8
Fatigue Strength, MPa 240 to 330
160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 510 to 550
220
Tensile Strength: Ultimate (UTS), MPa 730 to 900
370
Tensile Strength: Yield (Proof), MPa 260 to 570
330

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1380
520
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
46
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
140

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.9
8.2
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 260
28
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 830
790
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 26 to 32
35
Strength to Weight: Bending, points 23 to 27
39
Thermal Diffusivity, mm2/s 4.0
58
Thermal Shock Resistance, points 15 to 18
16

Alloy Composition

Aluminum (Al), % 0
91.5 to 94.5
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 16 to 19
0
Copper (Cu), % 0
0.5 to 1.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 66.4 to 78
0 to 0.3
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0 to 2.0
0 to 0.050
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 6.0 to 9.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 2.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15