MakeItFrom.com
Menu (ESC)

EN 1.4318 Stainless Steel vs. S44401 Stainless Steel

Both EN 1.4318 stainless steel and S44401 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4318 stainless steel and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 44
21
Fatigue Strength, MPa 340
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 520
300
Tensile Strength: Ultimate (UTS), MPa 740
480
Tensile Strength: Yield (Proof), MPa 380
300

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 410
510
Maximum Temperature: Mechanical, °C 910
930
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
22
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
12
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 39
40
Embodied Water, L/kg 130
130

Common Calculations

PREN (Pitting Resistance) 20
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
90
Resilience: Unit (Modulus of Resilience), kJ/m3 360
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
17
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 4.0
5.9
Thermal Shock Resistance, points 17
17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 16.5 to 18.5
17.5 to 19.5
Iron (Fe), % 70.2 to 77.4
75.1 to 80.6
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 6.0 to 8.0
0 to 1.0
Nitrogen (N), % 0.1 to 0.2
0 to 0.035
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8