MakeItFrom.com
Menu (ESC)

EN 1.4406 Stainless Steel vs. EN 1.0345 Steel

Both EN 1.4406 stainless steel and EN 1.0345 steel are iron alloys. They have 69% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4406 stainless steel and the bottom bar is EN 1.0345 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
120
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 42
27
Fatigue Strength, MPa 280
170
Impact Strength: V-Notched Charpy, J 90
44
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 470
270
Tensile Strength: Ultimate (UTS), MPa 680
420
Tensile Strength: Yield (Proof), MPa 320
230

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 950
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 18
2.1
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.7
1.5
Embodied Energy, MJ/kg 51
19
Embodied Water, L/kg 150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
96
Resilience: Unit (Modulus of Resilience), kJ/m3 260
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
15
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 16.5 to 18.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 63.2 to 71.4
97.2 to 99.38
Manganese (Mn), % 0 to 2.0
0.6 to 1.2
Molybdenum (Mo), % 2.0 to 2.5
0 to 0.080
Nickel (Ni), % 10 to 12.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.020
Nitrogen (N), % 0.12 to 0.22
0 to 0.012
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.020