MakeItFrom.com
Menu (ESC)

EN 1.4406 Stainless Steel vs. Grade 9 Titanium

EN 1.4406 stainless steel belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4406 stainless steel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 42
11 to 17
Fatigue Strength, MPa 280
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
40
Shear Strength, MPa 470
430 to 580
Tensile Strength: Ultimate (UTS), MPa 680
700 to 960
Tensile Strength: Yield (Proof), MPa 320
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 950
330
Melting Completion (Liquidus), °C 1440
1640
Melting Onset (Solidus), °C 1400
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 15
8.1
Thermal Expansion, µm/m-K 16
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 18
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 3.7
36
Embodied Energy, MJ/kg 51
580
Embodied Water, L/kg 150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 24
43 to 60
Strength to Weight: Bending, points 22
39 to 48
Thermal Diffusivity, mm2/s 4.0
3.3
Thermal Shock Resistance, points 15
52 to 71

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 16.5 to 18.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 63.2 to 71.4
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10 to 12.5
0
Nitrogen (N), % 0.12 to 0.22
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4