MakeItFrom.com
Menu (ESC)

EN 1.4408 Stainless Steel vs. N08320 Stainless Steel

Both EN 1.4408 stainless steel and N08320 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 76% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4408 stainless steel and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
40
Fatigue Strength, MPa 170
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Tensile Strength: Ultimate (UTS), MPa 510
580
Tensile Strength: Yield (Proof), MPa 210
220

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 420
430
Maximum Temperature: Mechanical, °C 990
1100
Melting Completion (Liquidus), °C 1440
1400
Melting Onset (Solidus), °C 1390
1350
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 18
28
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.7
4.9
Embodied Energy, MJ/kg 52
69
Embodied Water, L/kg 150
200

Common Calculations

PREN (Pitting Resistance) 26
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
180
Resilience: Unit (Modulus of Resilience), kJ/m3 110
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 3.9
3.3
Thermal Shock Resistance, points 11
13

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.050
Chromium (Cr), % 18 to 20
21 to 23
Iron (Fe), % 62.4 to 71
40.4 to 50
Manganese (Mn), % 0 to 1.5
0 to 2.5
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 9.0 to 12
25 to 27
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030