MakeItFrom.com
Menu (ESC)

EN 1.4408 Stainless Steel vs. S44660 Stainless Steel

Both EN 1.4408 stainless steel and S44660 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4408 stainless steel and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
210
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 34
20
Fatigue Strength, MPa 170
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
81
Tensile Strength: Ultimate (UTS), MPa 510
660
Tensile Strength: Yield (Proof), MPa 210
510

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 420
640
Maximum Temperature: Mechanical, °C 990
1100
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 18
21
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.7
4.3
Embodied Energy, MJ/kg 52
61
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 26
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110
640
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 3.9
4.5
Thermal Shock Resistance, points 11
21

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.030
Chromium (Cr), % 18 to 20
25 to 28
Iron (Fe), % 62.4 to 71
60.4 to 71
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 2.0 to 2.5
3.0 to 4.0
Nickel (Ni), % 9.0 to 12
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0