MakeItFrom.com
Menu (ESC)

EN 1.4423 Stainless Steel vs. ACI-ASTM CF8C Steel

Both EN 1.4423 stainless steel and ACI-ASTM CF8C steel are iron alloys. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4423 stainless steel and the bottom bar is ACI-ASTM CF8C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
40
Fatigue Strength, MPa 380
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 850
530
Tensile Strength: Yield (Proof), MPa 630
260

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 390
490
Maximum Temperature: Mechanical, °C 780
980
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 9.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
19
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.7
Embodied Energy, MJ/kg 43
53
Embodied Water, L/kg 120
150

Common Calculations

PREN (Pitting Resistance) 21
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1000
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30
19
Strength to Weight: Bending, points 25
19
Thermal Diffusivity, mm2/s 4.3
4.3
Thermal Shock Resistance, points 31
11

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.080
Chromium (Cr), % 11 to 13
18 to 21
Copper (Cu), % 0.2 to 0.8
0
Iron (Fe), % 73.8 to 80.5
61.8 to 73
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 2.3 to 2.8
0 to 0.5
Nickel (Ni), % 6.0 to 7.0
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 2.0
Sulfur (S), % 0 to 0.0030
0 to 0.040