MakeItFrom.com
Menu (ESC)

EN 1.4451 Stainless Steel vs. Grade 13 Titanium

EN 1.4451 stainless steel belongs to the iron alloys classification, while grade 13 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4451 stainless steel and the bottom bar is grade 13 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 25
27
Fatigue Strength, MPa 370
140
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
41
Tensile Strength: Ultimate (UTS), MPa 750
310
Tensile Strength: Yield (Proof), MPa 540
190

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1430
1660
Melting Onset (Solidus), °C 1380
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 17
22
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 20
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.8
32
Embodied Energy, MJ/kg 53
520
Embodied Water, L/kg 190
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
73
Resilience: Unit (Modulus of Resilience), kJ/m3 710
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 27
19
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 4.5
8.9
Thermal Shock Resistance, points 16
24

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 25 to 27
0
Copper (Cu), % 2.8 to 3.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 56.2 to 64.6
0 to 0.2
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 5.0 to 7.0
0.4 to 0.6
Nitrogen (N), % 0.12 to 0.22
0 to 0.030
Oxygen (O), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.035
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
98.5 to 99.56
Residuals, % 0
0 to 0.4