MakeItFrom.com
Menu (ESC)

EN 1.4470 Stainless Steel vs. C85400 Brass

EN 1.4470 stainless steel belongs to the iron alloys classification, while C85400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4470 stainless steel and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 23
23
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 680
220
Tensile Strength: Yield (Proof), MPa 480
85

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1060
130
Melting Completion (Liquidus), °C 1450
940
Melting Onset (Solidus), °C 1400
940
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 18
89
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
22

Otherwise Unclassified Properties

Base Metal Price, % relative 17
25
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 49
46
Embodied Water, L/kg 160
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
40
Resilience: Unit (Modulus of Resilience), kJ/m3 570
35
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
7.5
Strength to Weight: Bending, points 22
9.9
Thermal Diffusivity, mm2/s 4.8
28
Thermal Shock Resistance, points 18
7.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21 to 23
0
Copper (Cu), % 0
65 to 70
Iron (Fe), % 63.7 to 71.9
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 4.5 to 6.5
0 to 1.0
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1