MakeItFrom.com
Menu (ESC)

EN 1.4482 Stainless Steel vs. Grade 23 Titanium

EN 1.4482 stainless steel belongs to the iron alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4482 stainless steel and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
6.7 to 11
Fatigue Strength, MPa 420 to 450
470 to 500
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
40
Shear Strength, MPa 510 to 530
540 to 570
Tensile Strength: Ultimate (UTS), MPa 770 to 800
930 to 940
Tensile Strength: Yield (Proof), MPa 530 to 570
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 980
340
Melting Completion (Liquidus), °C 1420
1610
Melting Onset (Solidus), °C 1370
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 15
7.1
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 7.7
4.4
Embodied Carbon, kg CO2/kg material 2.7
38
Embodied Energy, MJ/kg 38
610
Embodied Water, L/kg 150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 250
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 820
3430 to 3560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28 to 29
58 to 59
Strength to Weight: Bending, points 24 to 25
48
Thermal Diffusivity, mm2/s 4.0
2.9
Thermal Shock Resistance, points 21 to 22
67 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 19.5 to 21.5
0
Copper (Cu), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 66.1 to 74.9
0 to 0.25
Manganese (Mn), % 4.0 to 6.0
0
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 1.5 to 3.5
0
Nitrogen (N), % 0.050 to 0.2
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4