MakeItFrom.com
Menu (ESC)

EN 1.4490 Stainless Steel vs. 206.0 Aluminum

EN 1.4490 stainless steel belongs to the iron alloys classification, while 206.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4490 stainless steel and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 34
8.4 to 12
Fatigue Strength, MPa 210
88 to 210
Impact Strength: V-Notched Charpy, J 90
9.5
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Tensile Strength: Ultimate (UTS), MPa 560
330 to 440
Tensile Strength: Yield (Proof), MPa 260
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1390
570
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
99

Otherwise Unclassified Properties

Base Metal Price, % relative 19
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 3.7
8.0
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 170
270 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 20
30 to 40
Strength to Weight: Bending, points 19
35 to 42
Thermal Diffusivity, mm2/s 4.1
46
Thermal Shock Resistance, points 16
17 to 23

Alloy Composition

Aluminum (Al), % 0
93.3 to 95.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 61.7 to 70.9
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 2.0
0.2 to 0.5
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 9.0 to 12
0 to 0.050
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.5
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15