MakeItFrom.com
Menu (ESC)

EN 1.4490 Stainless Steel vs. C86300 Bronze

EN 1.4490 stainless steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4490 stainless steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
14
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 560
850
Tensile Strength: Yield (Proof), MPa 260
480

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1440
920
Melting Onset (Solidus), °C 1390
890
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.7
3.0
Embodied Energy, MJ/kg 52
51
Embodied Water, L/kg 150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
100
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20
30
Strength to Weight: Bending, points 19
25
Thermal Diffusivity, mm2/s 4.1
11
Thermal Shock Resistance, points 16
28

Alloy Composition

Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 61.7 to 70.9
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 9.0 to 12
0 to 1.0
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0