MakeItFrom.com
Menu (ESC)

EN 1.4490 Stainless Steel vs. S32803 Stainless Steel

Both EN 1.4490 stainless steel and S32803 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4490 stainless steel and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 34
18
Fatigue Strength, MPa 210
350
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
81
Tensile Strength: Ultimate (UTS), MPa 560
680
Tensile Strength: Yield (Proof), MPa 260
560

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 420
510
Maximum Temperature: Mechanical, °C 990
1100
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
19
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.7
3.7
Embodied Energy, MJ/kg 52
53
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 29
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
760
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 4.1
4.4
Thermal Shock Resistance, points 16
22

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.015
Chromium (Cr), % 18 to 20
28 to 29
Iron (Fe), % 61.7 to 70.9
62.9 to 67.1
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 2.0 to 2.5
1.8 to 2.5
Nickel (Ni), % 9.0 to 12
3.0 to 4.0
Niobium (Nb), % 0
0.15 to 0.5
Nitrogen (N), % 0.12 to 0.2
0 to 0.020
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0 to 1.5
0 to 0.55
Sulfur (S), % 0 to 0.030
0 to 0.0035