MakeItFrom.com
Menu (ESC)

EN 1.4501 Stainless Steel vs. EN AC-46600 Aluminum

EN 1.4501 stainless steel belongs to the iron alloys classification, while EN AC-46600 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4501 stainless steel and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
77
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 27
1.1
Fatigue Strength, MPa 430
75
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 830
180
Tensile Strength: Yield (Proof), MPa 600
110

Thermal Properties

Latent Heat of Fusion, J/g 300
490
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
620
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
94

Otherwise Unclassified Properties

Base Metal Price, % relative 22
10
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 4.1
7.8
Embodied Energy, MJ/kg 57
150
Embodied Water, L/kg 180
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 870
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 29
18
Strength to Weight: Bending, points 25
25
Thermal Diffusivity, mm2/s 4.0
51
Thermal Shock Resistance, points 22
8.1

Alloy Composition

Aluminum (Al), % 0
85.6 to 92.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.5 to 1.0
1.5 to 2.5
Iron (Fe), % 57.6 to 65.8
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0 to 1.0
0.15 to 0.65
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.0 to 8.0
0 to 0.35
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
6.0 to 8.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0.5 to 1.0
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.15