MakeItFrom.com
Menu (ESC)

EN 1.4508 Stainless Steel vs. 7076 Aluminum

EN 1.4508 stainless steel belongs to the iron alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4508 stainless steel and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
6.2
Fatigue Strength, MPa 210
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 570
530
Tensile Strength: Yield (Proof), MPa 260
460

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
460
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 4.0
8.0
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 160
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
31
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 20
49
Strength to Weight: Bending, points 19
48
Thermal Diffusivity, mm2/s 4.1
54
Thermal Shock Resistance, points 17
23

Alloy Composition

Aluminum (Al), % 0
86.9 to 91.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
0.3 to 1.0
Iron (Fe), % 61.2 to 69.9
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0 to 1.5
0.3 to 0.8
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 9.0 to 12
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.15