MakeItFrom.com
Menu (ESC)

EN 1.4508 Stainless Steel vs. EN 1.4961 Stainless Steel

Both EN 1.4508 stainless steel and EN 1.4961 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have a moderately high 93% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4508 stainless steel and the bottom bar is EN 1.4961 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
39
Fatigue Strength, MPa 210
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
76
Tensile Strength: Ultimate (UTS), MPa 570
610
Tensile Strength: Yield (Proof), MPa 260
220

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 420
510
Maximum Temperature: Mechanical, °C 1000
890
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
21
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.0
4.0
Embodied Energy, MJ/kg 55
57
Embodied Water, L/kg 160
140

Common Calculations

PREN (Pitting Resistance) 32
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
190
Resilience: Unit (Modulus of Resilience), kJ/m3 170
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 4.1
4.3
Thermal Shock Resistance, points 17
14

Alloy Composition

Carbon (C), % 0 to 0.030
0.040 to 0.1
Chromium (Cr), % 18 to 20
15 to 17
Iron (Fe), % 61.2 to 69.9
65.6 to 72.3
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 9.0 to 12
12 to 14
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.5
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.015