MakeItFrom.com
Menu (ESC)

EN 1.4508 Stainless Steel vs. EN 2.4663 Nickel

EN 1.4508 stainless steel belongs to the iron alloys classification, while EN 2.4663 nickel belongs to the nickel alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4508 stainless steel and the bottom bar is EN 2.4663 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 34
40
Fatigue Strength, MPa 210
250
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
81
Tensile Strength: Ultimate (UTS), MPa 570
780
Tensile Strength: Yield (Proof), MPa 260
310

Thermal Properties

Latent Heat of Fusion, J/g 300
320
Maximum Temperature: Mechanical, °C 1000
1010
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
75
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 4.0
11
Embodied Energy, MJ/kg 55
140
Embodied Water, L/kg 160
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
250
Resilience: Unit (Modulus of Resilience), kJ/m3 170
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 4.1
3.5
Thermal Shock Resistance, points 17
22

Alloy Composition

Aluminum (Al), % 0
0.7 to 1.4
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0 to 0.030
0.050 to 0.1
Chromium (Cr), % 18 to 20
20 to 23
Cobalt (Co), % 0
11 to 14
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 61.2 to 69.9
0 to 2.0
Manganese (Mn), % 0 to 1.5
0 to 0.2
Molybdenum (Mo), % 3.0 to 3.5
8.5 to 10
Nickel (Ni), % 9.0 to 12
48 to 59.6
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.5
0 to 0.2
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0.2 to 0.6