MakeItFrom.com
Menu (ESC)

EN 1.4511 Stainless Steel vs. S44401 Stainless Steel

Both EN 1.4511 stainless steel and S44401 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 95% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4511 stainless steel and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
21
Fatigue Strength, MPa 180
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 330
300
Tensile Strength: Ultimate (UTS), MPa 510
480
Tensile Strength: Yield (Proof), MPa 260
300

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 480
510
Maximum Temperature: Mechanical, °C 870
930
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
22
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.5
2.9
Embodied Energy, MJ/kg 37
40
Embodied Water, L/kg 120
130

Common Calculations

PREN (Pitting Resistance) 17
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
90
Resilience: Unit (Modulus of Resilience), kJ/m3 170
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 6.7
5.9
Thermal Shock Resistance, points 19
17

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.025
Chromium (Cr), % 16 to 18
17.5 to 19.5
Iron (Fe), % 78.9 to 84
75.1 to 80.6
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8