MakeItFrom.com
Menu (ESC)

EN 1.4526 Stainless Steel vs. SAE-AISI 52100 Steel

Both EN 1.4526 stainless steel and SAE-AISI 52100 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4526 stainless steel and the bottom bar is SAE-AISI 52100 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
10 to 20
Fatigue Strength, MPa 230
250 to 340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
72
Shear Strength, MPa 340
370 to 420
Tensile Strength: Ultimate (UTS), MPa 540
590 to 2010
Tensile Strength: Yield (Proof), MPa 330
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 880
430
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
47
Thermal Expansion, µm/m-K 10
12 to 13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.4
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.5
Embodied Energy, MJ/kg 41
20
Embodied Water, L/kg 120
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
54 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 280
350 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
21 to 72
Strength to Weight: Bending, points 19
20 to 45
Thermal Diffusivity, mm2/s 8.1
13
Thermal Shock Resistance, points 19
19 to 61

Alloy Composition

Carbon (C), % 0 to 0.080
0.93 to 1.1
Chromium (Cr), % 16 to 18
1.4 to 1.6
Iron (Fe), % 77.4 to 83.1
96.5 to 97.3
Manganese (Mn), % 0 to 1.0
0.25 to 0.45
Molybdenum (Mo), % 0.8 to 1.4
0
Niobium (Nb), % 0.1 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.015