MakeItFrom.com
Menu (ESC)

EN 1.4560 Stainless Steel vs. 6061 Aluminum

EN 1.4560 stainless steel belongs to the iron alloys classification, while 6061 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4560 stainless steel and the bottom bar is 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 50
3.4 to 20
Fatigue Strength, MPa 190
58 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 390
84 to 210
Tensile Strength: Ultimate (UTS), MPa 550
130 to 410
Tensile Strength: Yield (Proof), MPa 190
76 to 370

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1370
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
170
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
43
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
140

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.0
8.3
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
3.8 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 92
42 to 1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 20
13 to 42
Strength to Weight: Bending, points 19
21 to 45
Thermal Diffusivity, mm2/s 4.0
68
Thermal Shock Resistance, points 12
5.7 to 18

Alloy Composition

Aluminum (Al), % 0
95.9 to 98.6
Carbon (C), % 0 to 0.035
0
Chromium (Cr), % 18 to 19
0.040 to 0.35
Copper (Cu), % 1.5 to 2.0
0.15 to 0.4
Iron (Fe), % 66.8 to 71
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 1.5 to 2.0
0 to 0.15
Nickel (Ni), % 8.0 to 9.0
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15