MakeItFrom.com
Menu (ESC)

EN 1.4560 Stainless Steel vs. EN 1.4818 Stainless Steel

Both EN 1.4560 stainless steel and EN 1.4818 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have a very high 97% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4560 stainless steel and the bottom bar is EN 1.4818 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 50
40
Fatigue Strength, MPa 190
280
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 390
480
Tensile Strength: Ultimate (UTS), MPa 550
700
Tensile Strength: Yield (Proof), MPa 190
330

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 420
420
Maximum Temperature: Mechanical, °C 940
1050
Melting Completion (Liquidus), °C 1420
1410
Melting Onset (Solidus), °C 1370
1370
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
16
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.0
3.1
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 19
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
230
Resilience: Unit (Modulus of Resilience), kJ/m3 92
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 4.0
4.5
Thermal Shock Resistance, points 12
15

Alloy Composition

Carbon (C), % 0 to 0.035
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 18 to 19
18 to 20
Copper (Cu), % 1.5 to 2.0
0
Iron (Fe), % 66.8 to 71
65.6 to 71.8
Manganese (Mn), % 1.5 to 2.0
0 to 1.0
Nickel (Ni), % 8.0 to 9.0
9.0 to 11
Nitrogen (N), % 0 to 0.1
0.12 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
1.0 to 2.0
Sulfur (S), % 0 to 0.015
0 to 0.015