MakeItFrom.com
Menu (ESC)

EN 1.4560 Stainless Steel vs. C96600 Copper

EN 1.4560 stainless steel belongs to the iron alloys classification, while C96600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4560 stainless steel and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 50
7.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
52
Tensile Strength: Ultimate (UTS), MPa 550
760
Tensile Strength: Yield (Proof), MPa 190
480

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 940
280
Melting Completion (Liquidus), °C 1420
1180
Melting Onset (Solidus), °C 1370
1100
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
30
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 15
65
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.0
7.0
Embodied Energy, MJ/kg 42
100
Embodied Water, L/kg 150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
47
Resilience: Unit (Modulus of Resilience), kJ/m3 92
830
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 4.0
8.4
Thermal Shock Resistance, points 12
25

Alloy Composition

Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.035
0
Chromium (Cr), % 18 to 19
0
Copper (Cu), % 1.5 to 2.0
63.5 to 69.8
Iron (Fe), % 66.8 to 71
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 1.5 to 2.0
0 to 1.0
Nickel (Ni), % 8.0 to 9.0
29 to 33
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5