MakeItFrom.com
Menu (ESC)

EN 1.4563 Stainless Steel vs. EN 1.4854 Stainless Steel

Both EN 1.4563 stainless steel and EN 1.4854 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have a moderately high 93% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4563 stainless steel and the bottom bar is EN 1.4854 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
45
Fatigue Strength, MPa 210
310
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
78
Shear Strength, MPa 420
520
Tensile Strength: Ultimate (UTS), MPa 620
750
Tensile Strength: Yield (Proof), MPa 250
340

Thermal Properties

Latent Heat of Fusion, J/g 310
330
Maximum Temperature: Corrosion, °C 460
450
Maximum Temperature: Mechanical, °C 1100
1170
Melting Completion (Liquidus), °C 1420
1370
Melting Onset (Solidus), °C 1370
1330
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
11
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
34
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 6.3
5.7
Embodied Energy, MJ/kg 87
81
Embodied Water, L/kg 240
220

Common Calculations

PREN (Pitting Resistance) 39
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
270
Resilience: Unit (Modulus of Resilience), kJ/m3 150
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
26
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 3.2
2.9
Thermal Shock Resistance, points 13
18

Alloy Composition

Carbon (C), % 0 to 0.020
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 26 to 28
24 to 26
Copper (Cu), % 0.7 to 1.5
0
Iron (Fe), % 31.6 to 40.3
33.6 to 40.6
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 30 to 32
34 to 36
Nitrogen (N), % 0 to 0.1
0.12 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.7
1.2 to 2.0
Sulfur (S), % 0 to 0.010
0 to 0.015