MakeItFrom.com
Menu (ESC)

EN 1.4567 Stainless Steel vs. EN 1.0478 Steel

Both EN 1.4567 stainless steel and EN 1.0478 steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4567 stainless steel and the bottom bar is EN 1.0478 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22 to 51
24
Fatigue Strength, MPa 190 to 260
170
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 390 to 490
280
Tensile Strength: Ultimate (UTS), MPa 550 to 780
440
Tensile Strength: Yield (Proof), MPa 200 to 390
230

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 930
400
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 11
49
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 16
2.2
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.5
Embodied Energy, MJ/kg 43
20
Embodied Water, L/kg 150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
90
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 400
150
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 27
16
Strength to Weight: Bending, points 19 to 24
16
Thermal Diffusivity, mm2/s 3.0
13
Thermal Shock Resistance, points 12 to 17
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0 to 0.040
0 to 0.18
Chromium (Cr), % 17 to 19
0 to 0.3
Copper (Cu), % 3.0 to 4.0
0 to 0.2
Iron (Fe), % 63.3 to 71.5
96.9 to 99.4
Manganese (Mn), % 0 to 2.0
0.6 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 8.5 to 10.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.030
Nitrogen (N), % 0 to 0.1
0 to 0.020
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.015
Vanadium (V), % 0
0 to 0.050