MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. Grade 5 Titanium

EN 1.4568 stainless steel belongs to the iron alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 2.3 to 21
8.6 to 11
Fatigue Strength, MPa 220 to 670
530 to 630
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Shear Strength, MPa 520 to 930
600 to 710
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
1000 to 1190
Tensile Strength: Yield (Proof), MPa 330 to 1490
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 890
330
Melting Completion (Liquidus), °C 1420
1610
Melting Onset (Solidus), °C 1380
1650
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 16
6.8
Thermal Expansion, µm/m-K 13
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
36
Density, g/cm3 7.7
4.4
Embodied Carbon, kg CO2/kg material 2.8
38
Embodied Energy, MJ/kg 40
610
Embodied Water, L/kg 140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 30 to 58
62 to 75
Strength to Weight: Bending, points 25 to 40
50 to 56
Thermal Diffusivity, mm2/s 4.3
2.7
Thermal Shock Resistance, points 23 to 46
76 to 91

Alloy Composition

Aluminum (Al), % 0.7 to 1.5
5.5 to 6.8
Carbon (C), % 0 to 0.090
0 to 0.080
Chromium (Cr), % 16 to 18
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 70.9 to 76.8
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Residuals, % 0
0 to 0.4