MakeItFrom.com
Menu (ESC)

EN 1.4584 Stainless Steel vs. CC140C Copper

EN 1.4584 stainless steel belongs to the iron alloys classification, while CC140C copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4584 stainless steel and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
110
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
44
Tensile Strength: Ultimate (UTS), MPa 500
340
Tensile Strength: Yield (Proof), MPa 210
230

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1440
1100
Melting Onset (Solidus), °C 1390
1040
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 17
310
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
77
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
78

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 5.7
2.6
Embodied Energy, MJ/kg 78
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
34
Resilience: Unit (Modulus of Resilience), kJ/m3 110
220
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
10
Strength to Weight: Bending, points 17
12
Thermal Diffusivity, mm2/s 4.5
89
Thermal Shock Resistance, points 12
12

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 19 to 21
0.4 to 1.2
Copper (Cu), % 1.0 to 3.0
98.8 to 99.6
Iron (Fe), % 41.7 to 52
0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0